نوع مقاله : علمی پژوهشی

نویسندگان

1 استاد گروه علم اطلاعات و دانش‌شناسی دانشگاه شهید چمران اهواز

2 استادیار گروه علم اطلاعات و دانش‌شناسی، دانشگاه پیام نور، دانش‌آموخته دکتری دانشگاه شهید چمران اهواز

3 هیات علمی/ دانشگاه علوم پزشکی اصفهان

چکیده

هدف: هدف پژوهش حاضر، تعیین کیفیت داده های نظام های رایانه ای-کتابخانه ای ایران با توجه به نظرات کاربران نهایی این نظام ها است.
روش‌شناسی: پژوهش حاضر به روش پیمایشی به مقایسه کیفیت داده­های سه نظام رایانه‏ای- کتابخانه‏ای پارس‏آذرخش، نوسا و پیام مشرق، از نظر محتوا، سازماندهی، شکل ارائه و استفاده پرداخت.
یافته‌ها: در سه نظام رایانه‏ای کتابخانه‏ای مورد بررسی، بیشترین تفاوت میانگین در بین پاسخ‌گویان  نظام رایانه­ای-کتابخانه­ای پیام مشرق و مربوط به عامل چهارم مقیاس یعنی "کیفیت داده­ها ازنظر استفاده" بوده است.
نتیجه‌گیری: در کل، نتایج بررسی ها نشان داد که به نظر می آید، پاسخ‌گویان این پژوهش، نسبت به نظام‏های رایانه‏ای کتابخانه‏ای پارس‏آذرخش و پیام مشرق از نظر محتوا، سازماندهی و شکل ارائهی داده­ها، نظرات مشابهی دارند. نتایج مذکور همچنین نشان داد که نظرات پاسخ‌گویان نسبت به نظام‏های رایانه‏ای کتابخانه‏ای پارس‏آذرخش و نوسا نیز از نظر محتوا و شکل ارائهی داده­ها، دارای میانگین همسان است. به‏علاوه کیفیت داده­ها از نظر استفاده برای هیچ یک از نظام‏های رایانه‏ای کتابخانه‏ای، دارای میانگین همسان نمی باشد.

کلیدواژه‌ها

عنوان مقاله [English]

Assessment of Data Quality in Iran Computerized Library Systems Based on End-users̕ Viewpoint

نویسندگان [English]

  • A. Hossein Farajpahlou 1
  • Mehri Shahbazi 2
  • AliReza Rahimi 3
  • Farideh Osareh 1

1 Faculty/Shahid Chamran university

2 Faculty/ Payame Noor university

3 Faculty/ Isfahan University Of Medical

چکیده [English]

To evaluate of the data quality in Iran computerized library systems based on end users’ viewpoint is the main purpose of the present study. This study uses data quality assessment scale of computerized library systems from the viewpoing of the end user as a Likert questionnaire to assess and compare the quality of information in terms of content, organization, presentation and usage in three computerized library systems, namely, ParsAzarakhsh, Nosa and Payame-‏Mashregh in Shahid Chamran University of Ahvaz, Ahvaz Azad university and Isfahan's industrial University. In three computerized library systems under study, the biggest difference between the average response was in Payam Mashregh and related to the fourth factor of scale "the quality of information in terms of use". Overall, the results showed that respondents of the study had same view toward of content, organization, and form of presentation of the information in computerized library systems of Pars Azarakhsh and Payam Mashregh. These results also showed that respondents' views about the computerized library systems of Pars Azarakhsh and Nosa also ..

کلیدواژه‌ها [English]

  • Keywords: data quality
  • computerized library system
  • Pars Azarakhsh
  • Nosa and Payam Mashregh
Alkhattabi, M., Neagu, D., Cullen, A. (2011). Assessing information quality of e- learning systems: a web mining approach. Computers in Human Behavior, 27 (2), 862-873.
Bardaki, C., Kourouthanassis, P., Pramatari, K. (2011). Modeling the information completeness of object tracking systems. The Journal of Strategic  Information Systems, 20 (3), 268-282.
Bergvall, T., Lindquist, M., Noren, G. N. (2014). vigiGrade: A tools to identify well-documented individual case reports and highlight systematic  data quality issues. Drug Safety, 37, 65–77.
Calero, C., Caro, A., Piattini, M. (2008). An applicable data quality model for web portal data consumers. World Wide Web, 11, 465–484.
Caro, A., Calero, C., Caballero, I., Piattini, M. (2008). A proposal for a set of attributes relevant for Web portal data quality. Software Quality Journal, 16, 513–542.
Chen, C. (2002). A framework for optimizing data quality given limited resources.
Doctoral dissertation, Arizona State University.
Chen, H. (2009). Modeling information quality in agent-based e-commerce systems.
Masters Dissertation, University of Ottawa.
Chun, C., Joshua, P. (2006). On the use of the appropriateness and cohesiveness Web data quality dimensions for finding high quality Web pages. Doctoral dissertation, Hong Kong University of Science and Technology.
Eppler, M. (2003). Managing information quality: increasing the value of information in knowledge-intensive products and processes. Berlin, Germany: Springer-Verlag.
Guerra-Garcia, C., Caballero, I., Piattini, M. (2013). Capturing data quality requirements for web applications by means of DQ_WebRE. Information Systems Frontiers, 15, 433–445.
Haug, A., Arlbjorn, J. S., Pedersen, A. (2009). A classification model of ERP system data quality. Industrial Management & Data Systems, 109 (8), 1053- 1069.
Herrera-Viedma, E., Peis, E., Morales-del-Castillo, J., Alonso, S., Anaya, K.  (2007). A fuzzy linguistic model to evaluate the quality of web sites that store XML documents. International Journal of Approximate Reasoning, 46, 226- 253.
 
 
 
 
 
 
 
Jeong, M., Lambert, C. U. (2001). Adaptation of an information quality framework to measure customers’ behavioral intentions to use lodging web sites. International Journal of Hospitality Management, 20 (2), 129-146.
Leite, P., Goncalves, J., Teixeira, P., Rocha, A. (2016). A model for the evaluation of data quality in health unit websites. Health Informatics Journal, 22 (3), 479-495.
Liaw. S. T., Taggart, J., Yu, H., Rahimi, A. (2014). Electronic health records and disease registries to support integrated care in a health neighbourhood: an ontology-based methodology. Paper presented at the AMIA Submmits on Translational Science Proceedings.
Martinez, A. (2007). BIODQ: A model for data quality estimation and management in biological databases. Doctoral dissertation, University Of Florida.
Moges, H., Dejaeger, K., Lemahieu, W., Baesens, B. (2013). A multidimensional analysis of data quality for credit risk management: New insights and challenges. Information & Management, 50 (1), 43- 58.
Parssian, A. H. (2002). Assessing information quality for relational databases.
Doctoral dissertation, University of Texas and Dallas.
Rahimi, A., Liaw, S. T., Ray, P., Taggart, J., & Yu, H. (2014b). Ontological specification of quality of chronic disease data in EHRs to support decision analytics: a realist review. Decision Analytics, 1 (5), 1-31.
Rahimi, A., Parameswaran, N., Ray, P. K., Taggart, J., Yu, H., & Liaw, S.T.  (2014c). Development of a methodological approach for data quality  ontology in Diabetes management. Int J E-Health Med Commun, 5 (3), 58- 77.
Ratnaningtyas, D. D., Surendro, K. (2013). Information quality improvement model on hospital information system using Six Sigma. Procedia Technology, 9, 1166-1172.
Scannapieco, M., Virgillito, A., Marchetti, C., Mecella, M., Baldoni, R. (2004). The DaQuinCIS architecture: a platform for exchanging and improving data quality in cooperative information system. Information Systems Frontiers, 29 (7), 551-582.
Smart, K. L. (2002). Assessing Quality Documents. ACM Journal of Computer Documentation, 26 (3), 130-140.
Stvilia, B. (2006). Measuring information quality. Doctoral dissertation, University of Illinois at Urbana-Champaign.
Van-der Togt, R., Bakker, P. J., Jaspers, M. W. (2011). A framework for performance and data quality assessment of Radio Frequency IDentification (RFID) systems in health care settings. Journal of Biomedical Informatics, 44 (2), 372-383.
Wang, R. Y. (1998). A product perspective on total data qualtiy. Communications of the ACM, 41 (2), 58- 65.
 
 
 
 
 
 
Xiaojuan, B., Shurong, N. Zhaolin, X., Peng, C. (2008). Novel method for the evaluation of data quality based on fuzzy control. Journal of Systems Engineering and Electronics 19 (3), 606-610.
Xiaosong, Z., Zhen, H., Meng, Z., Dainuan, Y., Ting, Z. (2008). The application study of ERP data quality assessment and improvement methodology. Industrial Electronics and Applications 2008. ICIEA 2008. 3rd IEEE Conference on, 1036-1039.