نوع مقاله : علمی پژوهشی

نویسنده

دانشیار ، گروه علم اطلاعات و دانش‌شناسی، دانشگاه شهید چمران اهواز، اهواز، ایران

چکیده

این پژوهش به لحاظ هدف از نوع مطالعات کاربردی و از نظر روش یک تحقیق کمی است. جامعه آماری پژوهش شامل کلیه دانشجویان تحصیلات تکمیلی دانشگاه شهید چمران اهواز است که تعداد آن‌ها بر اساس اعلام دانشگاه 4443 نفر برای سال تحصیلی 1400 – 99 می‌باشد. این پژوهش 200 نفر به عنوان نمونه پژوهش مشارکت داده شدند. پرسشنامه یادگیری الکترونیکی ساخته شده در این پژوهش حاصل مطالعات کتابخانه‌ای و بررسی الگوهای یادگیری مجازی است که با الهام از الگوی سالمون (2004) با تاکید بر یادگیری الکترونیکی دانشجویان طراحی شده است. برای تجزیه و تحلیل داده‌ها از آزمون تحلیل عاملی اکتشافی با استفاده از نرم افزار SPSS نسخه 22؛ و تحلیل عاملی تأییدی با استفاده از نرم افزار LISREL (نسخه 8*8) استفاده است.

نتایج آزمون‌های پژوهش نشان داد پایایی پرسشنامه یادگیری الکترونیکی با ضریب آلفای کرونباخ کلی 97/0 و ضرایب آلفای کرونباخ مؤلفه‌ها بین 88/0 تا 96/0 مناسب و رضایت‌بخش است. به‌منظور تحلیل عاملی شاخص کفایت نمونه‌گیری و مقدار آزمون کرویت بارتلت محاسبه شد. علاوه بر کفایت نمونه‌گیری، اجرای تحلیل عاملی بر پایه ماتریس مورد مطالعه نیز قابل توجیه بود، بنابراین پرسشنامه یادگیری الکترونیکی از ساختار عاملی مناسبی برخوردار است. تمام 36 گویه پرسشنامه با هم همبستگی دارند همبستگی بین سازه‌های پرسشنامه یادگیری الکترونیکی دانشجویان معنادار بوده و می توان گفت پرسشنامه طراحی شده از روایی افتراقی مطلوبی برای سازه‌ها برخوردار است؛ همچنین، نتایج پژوهش نشان داد که الگوی 4 عاملی، برازش قابل قبولی با داده‌های پژوهش دارد. با توجه به نتایج پژوهش حاضر گویه‌های طراحی شده در زمینه ارزیابی یادگیری الکترونیکی پرسشنامه‌ای روا و پایا می‌باشد که می‌تواند در مطالعات آینده با استفاده از این ابزار قدمی در جهت تعیین دقیق و جامع یادگیری الکترونیکی در بین دانشجویان برداشت .

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Construction and validation of students' e-learning questionnaire

نویسنده [English]

  • Shahnaz Khademizadeh

Assistant Professor, Shahid Chamran University of Ahvaz , Ahvaz, Iran

چکیده [English]

Background and Objectives: The purpose of this study is to construct and validate a student e-learning questionnaire.
Methodology: This research is an applied study in terms of purpose and a quantitative research in terms of method. The statistical population of the study includes all graduate students of Shahid Chamran University of Ahvaz, whose number according to the announcement of the university is 4443 people for the academic year 1400-99. There is no general agreement on the number of samples in factor analysis, but in general, most researchers consider a sample of at least 200 to be suitable for factor analysis (Brown, 2015). Meanwhile, Klein (2015) considers at least 200 samples suitable for this type of analysis (Kline, 2015). Therefore, 200 people participated in this study as a research sample. The e-learning questionnaire developed in this study is the result of library studies and review of virtual learning patterns, which was designed with the inspiration of Salmon (2004) model with emphasis on students' e-learning. This questionnaire is designed for 36 questions on a 5-point scale (very low to very high). To quantify these scales, the scores are given a score from one to five. In the quantitative part, the face and structure validity of the constructed questionnaire was reported to be good and the reliability of the instrument was obtained through Cronbach's alpha test of 0.97. To analyze the data from the exploratory factor analysis test using SPSS software version 22; Confirmatory factor analysis was performed using LISREL software (8 * 8 version). In this research, regarding exploratory factor analysis, the principal component method and varimax rotation have been used. In this study, to measure the validity of the four-factor model of the questionnaire, the fitness indicators of the model such as degree of freedom, statistical values of compliance criteria, adjusted fitness, softened fitness index, non-softened fitness index, adaptive fitness index, and the second root mean of residual squares Standardized has been used and its standard criteria have been measured based on studies such as Geffen et al. (2013).
Findings: The results of research tests showed that the reliability of the e-learning questionnaire with overall Cronbach's alpha coefficient of 0.97 and Cronbach's alpha coefficients of the components between 0.88 to 0.96 is appropriate and satisfactory. Sampling adequacy index and Bartlett sphericity test were calculated for factor analysis. In addition to the adequacy of sampling, the implementation of factor analysis based on the studied matrix was also justified, so the e-learning questionnaire has a suitable factor structure. All 36 items of the questionnaire are correlated. The correlation between the constructs of the students' e-learning questionnaire is significant and it can be said that the designed questionnaire has a good differential validity for the structures.
Discussion: The evaluation of e-learning in universities and higher education institutions is one of the topics that is extremely important in today's world and studies are needed to develop and promote it. There seems to be no standard tool for assessing e-learning and there is a variety of tools in this area. Therefore, the present study was conducted with the aim of constructing and validating a questionnaire to evaluate e-learning. Validation of questionnaires is very important and validation of tools is an important step in determining the psychometric properties of those tools. Once the tools are validated, their use can be helpful for proper evaluation. Therefore, the present designed questionnaire was tested for validation. In e-learning, students have access to e-content, and any amount of e-content provided has the appropriate variety and attractiveness, increases the motivation of students in e-learning. E-learning programs are effective in promoting student learning motivation. These include guides, procedures, and ways to access electronic content. The e-learning process should be designed to be compatible with any level of media literacy of students and enable students to actively participate in the design of courses, programs and e-content to make e-learning successful. Finally, the results showed that the 4-factor model has an acceptable fit with the research data. In general, according to the results of the present study, the designed items of the present questionnaire in the field of e-learning assessment are valid and reliable questionnaires that can be used in future studies using this tool to determine e-learning among students that provides useful planning information. And deficiencies and shortcomings are addressed by policy makers and managers.

کلیدواژه‌ها [English]

  • salmon pattern
  • e-learning
  • questionnaire validation
  • student
Anari Nejad, Abbas; Saketi, Parviz; And Safavid, Seyyed Ali Akbar (2011). Designing a conceptual framework for evaluating e-learning programs in higher education institutions. Journal of Educational Technology, 4(3). 191-201. [In Persian].
Attaran, Mohammad (2007). Virtual University: Rereading existing narratives. The first e-learning conference in Zanjan. [In Persian].
Azevedo, R. (2012). Beyond intelligent tutoring systems: Using computers as METAcognitive tools to enhance learning? Instructional Science, 30(1), 31-45. http://dx.doi.org/10.1023/A:1013592216234.
Babaei, Mahmoud (2011). Introduction to e-learning. Tehran: Iran Institute of Information Science and Technology. [In Persian].
Bagheri, M. S., Yamini, M., Riazi, A. (2009). Motivational and Learning Strategies of Iranian EFL Learners Exposed to an E-Learning Program. Journal of Teaching Language Skills (JTLS), 1(1), 1-30.
Bashlideh, Kiomers. (2015). Research methods and statistical analysis of research examples with SPSS and AMOS, Shahid Chamran University of Ahvaz: Ahvaz. [In Persian].
Berge, Z. L. (2007). Motivate and manage: Key activities of online instructors. In J. M. Spector (Ed.), Finding your online voice: Stories told by experienced online educators (pp. 73-82). Mahwah, NJ: Lawrence Erlbaum Associates.
Brown, T. A. (2015). Methodology in the social sciences.Confirmatory factor analysis for applied research (2nd ed.). The Guilford Press.
Brown, T. A. (2015). Confirmatory factor analysis for applied research. Guilford publications.
Cattell, R. B. (1966). The scree test for the number of factorsMultivariate behavioral research1(2), 245-276. ‏
Commission on Technology and Adult Learning. A Vision of E-Learning for America's Workforce.
Consway, B. & Whittingham, V. (2001). Managing knowledge and learning at unipart. Knowledge Management Review, 4(3), 14-17
Farhadi Robabeh (2004). E-learning: A new paradigm in the information age. Journal of Information Processing and Management. 21(1), pp. 49-66. [In Persian].
Ferguson, E., & Cox, T. (1993). Exploratory factor analysis: A users’ guideInternational journal of selection and assessment, 1(2), 84-94. ‏
Holmes, B. and Gardner, J. (2006). E-Learning: Concepts and Practice, London: SAGE Publications.
Ismaili, Hadi; Rahmani, Shahpour; Kazemi, Ahmad; And Ali Ahmadi, Mustafa (2015). Assessing the e-learning status of the virtual education unit of Sistan and Baluchestan University. General management research. 9(34). 223- 241. [In Persian].
Jaffee, David (2011). "globalization and Web-Based technology", Available at: http://www.unf.edu/~djaffee /virtualtran.htm
Hopson, M. H., Simms, R. L., & Knezek, G. A. (2001). Using a technology enriched environment to improve higher-order thinking skills. Journal of Research on Technology in Education, 34(2), 109-119. http://dx.doi.org/10.1080/15391523.2001.10782338.
Huang, Hsiu-Mei & Liaw, Shu-Sheng (2004). The Framework of Knowledge Creation for Online Learning Environments. Canadian Journal of Learning and Technology. 30(1).1-14.
Kermally, S. (2002). Effective knowledge management: A best practice blueprint. New York: John Wiley & Sons.
Kim, K. J. (2005). Adult Learners' Motivation in Self-directed Elearning. Unpublished Doctoral Dissertation, Indiana University.
Kline, R. B. (2015). Principles and practice of structural equation modeling. Guilford publications.
Liaw, S. S., Huang, H. M. (2003). An Investigation of Users Attitudes toward Search Engines as an Information Retrieval Tool. Computers in Human Behavior, 19(6), 751-765.
Macdonald, J. (2004). Developing competent e-learners: The role of assessment. Assessment and Evaluation in Higher Education, 29(2), 215-226.
Mahdiun, Ruhollah; Shabani, Ali; And Sadeghi, Maliha (2015). Improving the quality of e-learning courses in e-learning centers and institutions: Factors and consequences. Information Research and Public Libraries, 20(76). 173- 197. [In Persian].
Morrison, Don (2003). e-learning strategies: How to get Implementation and Delivery Right First Time. England: Wiley
Open and distance Learning Quality council. (2001). A Definition for E- learning. http://www.odlqc.org.uk/odlqe/n19-e.html
Palloff, Rena M.; Pratt, Keith. 2003. The Virtual Student: A Profile and Guide to Working with Online Learners. USA: John Wiley & Sons Inc.
Pineda Hoyos, J. E., & Tamayo Cano, L. H. (2016). E-moderating and e-tivities: The implementation of a workshop to develop online teaching skills in in-service teachers. PROFILE Issues in Teachers’ Professional Development, 18(1), 97-114. http://dx.doi.org/10.15446/profile.v18n1.44269.
Rahimi Doust, Gholam Hossein (2012). What has been the experience of e-learning projects? Challenges of advancing e-learning projects. Library and information. 10(2): 337- 355. [In Persian].
Robertson, I. (2007). Technology-based learning: Problematising VET students’ preferences and readiness. AVETRA Conference, 11-13 April 2007, Victoria University.
Rosenberg, Marc J (2006). Beyond E-Learning: Approaches and Technologies to Enhance Organizational Knowledge, Learning, and Performance. San Francisco: Wiley
Salmon,G (2011).The Key to Online Teaching and Learning. Routledge.
Schwen, T.M., Kalman, H. K., Hara, N., & Kisling, E. L. (1998). Potential knowledge management contributions to human performance technology research and practice. Educational Technology Research and Development, 46(4), 73-89.
Sorensen, C. & Lundh-Snis, U. (2001). Innovation through knowledge codification, Journal of Information Technology, 16, 83-97.
Trentin, G. (2001). From formal training to communities of practice via network-based learning. Educational Technology, 5-14.
Urdan, T. A. & Weggen, C. C. (2000). Corporate e-learning: exploring a new frontier.
Welsh, E. T.; Wanberg, C. R.; Brown, K. G. & Simmering, M. J. (2003). ELearning: Emerging Results and Future Directions. International Journal of Training and Development, 7 (4), 245–58.
Yaqubi, Jafar; Malek Mohammadi, Iraj; Irvani, Houshang; And Attaran, Mohammad (2009). Desirable characteristics of students and faculty members in e-learning in Iranian higher education: The perspective of virtual students. Quarterly Journal of Research and Planning in Higher Education, (47), 162. [In Persian].
Yew -Tee, Meng & Karney, Dennis. (2010). Sharing and cultivating tacit knowledge in an online learning environment. Computer-Supported Collaborative Learning. 5, 385–413
Zandian, Mahnaz (2018). The Role of Electronic Content in Education, National Conference on New Educational and Research Approaches in Education, Bandar Abbas, https://civilica.com/doc/768707. [In Persian].