نوع مقاله : علمی پژوهشی

نویسندگان

استادیار، پژوهشگاه علوم و فناوری اطلاعات ایران (ایرانداک)

چکیده

هدف: پژوهش حاضر با هدف شناسایی و تحلیل پژوهش‌های حوزه فناوری اطلاعات، استخراج موضوعات آن و ارائه اطلاعات علم‌سنجی مربوط به این موضوعات انجام شده است.
روش‌شناسی: در این مقاله، موضوعات حوزه‌ی فناوری اطلاعات استخراج و ارتباطات بین واژگان پرکاربرد و تکامل زمانی آن‌ها تجزیه و تحلیل و در نهایت دسته‌بندی شده است. برای این منظور از مدل‌سازی موضوعی که روشی شناخته شده برای خوشه‌بندی اطلاعات متنی است استفاده شد.
یافته‌ها: روندهای ده‌ساله تغییرات کلیدواژه‌ها در مجموعه مطالعات، استخراج شد و پس از خوشه‌بندی مقالات، کلیدواژه‌های مهم هر خوشه استخراج شد. مقالات استخراج شده در حوزه فناوری اطلاعات به ۸ دسته موضوعی تقسیم شدند که از موضوعات سخت‌افزار، ارتباطات و شبکه تا موضوعات کاربردهای هوشمند مانند اینترنت اشیا را شامل می‌شد. مشخص شد که کلیدواژه‌های پرکاربرد در این منابع همواره در گذر زمان در حال تغییر بوده است.
نتیجه‌گیری: در زمینه فناوری اطلاعات موضوعات در حال ترکیب و در بین دسته‌های مختلف فناوری اطلاعات در حال تغییر است. باتوجه به تغییر سمت و سو پژوهش‌های این حوزه از سخت‌افزار و ارتباطات به سمت کاربردها و تحلیل، به نظر می‌رسد زمینه‌های علمی آتی شامل کاربردهای روزمره و ایجادکننده ارزش‌افزوده با توجه به تحلیل داده و ارتباطات بین انسان و ماشین شکل خواهند گرفت و کاربردهای فناوری اطلاعات در علوم دیگر نمایان‌تر شده است. همچنین تمرکز بر پژوهش‌هایی که کمتر جنبه توسعه‌ای داشته و بیشتر کاربردی هستند و یا ارزش افزوده بیشتری برروی زیرساخت‌های موجود ایجاد نموده‌اند در این تغییرات مشهود است.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Analysis of information technology research trends using topic modeling

نویسندگان [English]

  • Arman Sajedinejad
  • Mohammad Rabiei

Assistant Professor, Iranian Research Institute for Information Science and Technology (IRANDOC)

چکیده [English]

Background and Objectives: IT's rapid progress and far-reaching impact on other scientific disciplines have not only necessitated significant changes in its own subjects but have also catalyzed extensive changes in the form, amount, and methodology of research in other fields. The objective of the present investigation was to analyze research conducted in the realm of information technology, extract its central themes, and furnish scientometric data pertaining to these themes.
Methodology: This paper explores the topics of the information technology field by extracting and categorizing the relationships between commonly used terms and their temporal evolution. To achieve this, the researchers employed topic modeling, a well-established method for clustering textual data. Topic modeling algorithms utilize statistical methods to analyze and interpret the primary words in documents, allowing for the examination of the presented issues and their interconnections and changes over time. Considering the rapid changes in the field of information technology, this paper drew upon materials spanning the last decade, including 10,000 papers sourced from top-tier journals featured in the Web of Science database.
Findings: The study extracted trends in keyword changes over the past decade and identified important keywords for each paper cluster after grouping them. The papers within the information technology domain were then categorized into eight themes, including hardware, communications, networks, and intelligent applications such as the Internet of Things. The study found that frequently used keywords have been continuously changing over time. The paper highlights that emerging keywords, including the Internet of Things, cloud computing, and Big Data, along with work areas such as Machine Learning and Deep Learning, are shaping the definition of information technology fields in the new era.
Discussion: Given the shift in research emphasis from hardware and communication to analysis and practical applications, it is likely that future scientific fields will focus on creating value through data analysis and human-machine communication in everyday applications, and information technology's relevance in other sciences will become more apparent. Future research can also concentrate on comparing global trends in information technology with domestic research, enabling the evaluation of the gap between the country's research and that of the world.

کلیدواژه‌ها [English]

  • Information technology
  • Topic modeling
  • text analysis
  • scientometrics
Abuhay, T. M., Nigatie, G. Y., & Kovalchuka, S. V. (2018). Towards Predicting Trend of Scientific Research Topics using Topic Modeling. Procedia Computer Science, 136(5), 304–310. DOI:10.1016/j.procs.2018.08.284
Battisti, F. D., Ferrara, A., & Salini , S. (2015). A decade of research in statistics: A topic model approach. Scientometrics, Springer,103(2), 413–433. DOI:10.1007/s11192-015-1554-1
Blei, D. M. (2012). Probabilistic topic models. Communications of the ACM, 55(4), 77-84. https://doi.org/10.1145/2133806.2133826
Blei, D., Andrew, Y., & Jordan, M. (2003). Latent dirichlet allocation. Journal of machine Learning research, 3(4-5), 993-1022. DOI:10.1162/jmlr.2003.3.4-5.993
Chang, J., & Blei, D. M. (2009). Relational topic models for document networks. International conference on artificial intelligence and statistics, 5, 81-88. https://www.researchgate.net/publication/220321034_Relational_Topic_Models_for_Document_Networks
Choudhary, A., Oluikpe, P. I., Harding, J., & Carrillo, P. M. (2009). The needs and benefits of Text Mining applications on Post-Project Reviews. Computers in Industry, 60(9), 728-740. DOI:10.1016/j.compind.2009.05.006
Debortoli, S., Müller, O.,  Junglas, I. A., & Brocke, J. v. (2016). Text Mining For Information Systems Researchers: An Annotated Topic Modeling Tutorial. Communications of the Association for Information Systems 39(1), 110 – 135. DOI:10.17705/1CAIS.03907
Feldman, R., & Sanger, J. (2007). The text mining handbook: advanced approaches in analyzing unstructured data. Cambridge university press.‏
Figuerola, C., García Marco, F. J., & Pinto, M.  (2017). Mapping the evolution of library and information science (1978–2014) using topic modeling on LISA. Siecntometrics, 112(12). DOI:10.1007/s11192-017-2432-9
Furner, J. (2015). Information science is neither. Library Trends, 63(3), 362–377.
Ghanadinejad, F., Heidari, G., & Chin Pardaz, R. (2018). Content analysis of texts related to research priorities in information science. Journal of Library and Information Science, 8 (1), 55-74. https://doi.org/10.22067/riis.v0i. (In Persian)
Gru, B., & Hornik, K. (2011). Topicsmodels: An R package for fitting topic models. Journal of Statistical Software, 40(13), 1–30.
Gurcan , F., Cagiltay , N. E., & Cagi, K. (2020). Mapping Human–Computer Interaction Research Themes and Trends from Its Existence to Today: A Topic Modeling-Based Review of past 60 Years. International Journal of Human–Computer Interaction, 2-15.
Hall, D. L., Jurafsky, D., & Manning, C. D. (2008). Studying the history of ideas using topic models. EMNLP '08: Proceedings of the Conference on Empirical Methods in Natural Language Processing, 363–371. DOI:10.3115/1613715.1613763
Homayounvala, E., & Jalalimanesh, A. (2012). Promoting Research Collaboration Based on Data Mining Techniques in Library Information Systems. IADIS Collaborative Technologies, 8(1), 73-82. Https://www.researchgate.net/publication/258246307_PROMOTING_RESEARCH_COLLABORATION_BASED_ON_DATA_MINING_TECHNIQUES_IN_LIBRARY_INFORMATION_SYSTEMS. (In Persian)
Jalali Manesh, A. (2020). Design and compilation of research charter, research institutes, and research groups of Iran Institute of Information Science and Technology [In Persian]. Tehran: Irandoc.
Jeyaraj, A., & Hassan Zadeh, A. (2019). Evolution of Information Systems Research: Insights from Topic Modeling. Information & Management, 57(4), 103207. DOI:10.1016/j.im.2019.103207
John, W, M., & Petko, B. (2013). Introduction-Topic models: What they are and why they matter . Poetics 41(6), 545-569. DOI: 10.1016/j.poetic.2013.10.001
Kherwa, P., & Bansal, P. (2018). Topic Modeling: A Comprehensive Review. EAI Endorsed Transactions on Scalable Information Systems, 7(24), 159623. DOI:10.4108/eai.13-7-2018.159623
Lee, J., Wood, J., & Kim, J. (2021). Tracing the Trends in Sustainability and Social Media Research Using Topic Modeling. Sustainability 13, 1-19.
Rabiei, M., Hosseini-Motlagh, S., & Haeri, A. (2017). Using text mining techniques for identifying research gaps and priorities: A case study of the environmental science in Iran. Scientometrics, 110(2), 815-842. (In Persian)
Rabiei, M., Hosseini-Motlagh, S., & Haeri, A. (2021). Evolution of IT, Management and Industrial Engineering research: A topic model approach. Scientia Iranica, 28(3), 1830-1852. (In Persian)
Razeqi, N., & Aghajani, H. (2020). Future research of Iranian scientific products until 2030 using ARIMA model. Library and Information Science Studies, 12(1), 13-34. (In Persian)
Robinson, K. A., Saldanha, I. J., & Mckoy, N. A. (2011). Development of a framework to identify research gaps from systematic reviews. Journal of clinical epidemiology, 64(12), 1325-1330. DOI:10.1016/j.jclinepi.2011.06.009
Sajedinejad, A. (2019). Comparison of research trends in the field of information technology in theses and dissertations of the country and its global trend using the method of text analysis. Tehran: Irandoc.
Seddiqqi, M., & Jalalimnesh, A. (2013). Study of Research Trend in Knowledge Management Field (2001-2010) and Mapping its Structure. Journal of Information Processing and Management, 28(2), 363-392. https://jipm.irandoc.ac.ir/article_699198.html. (In Persian)
Sharma, A., Rana, N. P., & Nunkoo, R. (2021). Fifty years of information management research: A conceptual structure analysis using structural topic modeling. International Journal of Information Management 58(5), 102316. DOI:10.1016/j.ijinfomgt.2021.102316
Steyvers, M., Smyth, P., Rosen-Zvi, M., & Griffiths, T. (2004). Probabilistic author-topic models for information discovery. International conference on Knowledge discovery and data mining, Seattle, WA, USA. 306–315. Proceedings of the tenth ACM SIGKDD. https://doi.org/10.1145/1014052.101408
Wallach, H. (2006). Topic modeling: Beyond bag-of-words. the 23rd International Conference on Machine Learning, 977-984. Pittsburgh, Pennsylvania, U.S.
Web of Science. (2020). Keywords Plus® (Web of Science Core Collection and Current Contents Connect only). Retrieved 01 29, 2020, from http://images.webofknowledge.com/WOKRS534DR1/help/WOS/
hp_advanced_search.html
Yau, C., Porter, A., Newman, N., & Suominen, A. (2014). Clustering scientific documents with topic modeling. Scientometrics, GTM special issue, 100(3), 767-786.
Zare-Farashbandi, F., Koohkan, E., Rajabi, G., & Yousofian, S. (2020). Identify and prioritize the information needs of families of children with cancer. Library and Information Science Studies, 12(1), 208-226. https://doi.org/10.22055/slis.2019.29524.1603. (In Persian)