Abuhay, T. M., Nigatie, G. Y., & Kovalchuka, S. V. (2018). Towards Predicting Trend of Scientific Research Topics using Topic Modeling.
Procedia Computer Science, 136(5), 304–310. DOI:
10.1016/j.procs.2018.08.284
Battisti, F. D., Ferrara, A., & Salini , S. (2015). A decade of research in statistics: A topic model approach.
Scientometrics, Springer,
103(2), 413–433. DOI:
10.1007/s11192-015-1554-1
Blei, D., Andrew, Y., & Jordan, M. (2003). Latent dirichlet allocation.
Journal of machine Learning research, 3(4-5), 993-1022. DOI:
10.1162/jmlr.2003.3.4-5.993
Choudhary, A., Oluikpe, P. I., Harding, J., & Carrillo, P. M. (2009). The needs and benefits of Text Mining applications on Post-Project Reviews.
Computers in Industry, 60(9), 728-740. DOI:
10.1016/j.compind.2009.05.006
Debortoli, S., Müller, O.,
Junglas,
I. A., & Brocke, J. v. (2016). Text Mining For Information Systems Researchers: An Annotated Topic Modeling Tutorial.
Communications of the Association for Information Systems 39(1), 110 – 135. DOI:
10.17705/1CAIS.03907
Feldman, R., & Sanger, J. (2007). The text mining handbook: advanced approaches in analyzing unstructured data. Cambridge university press.
Figuerola, C., García Marco, F. J., & Pinto, M. (2017). Mapping the evolution of library and information science (1978–2014) using topic modeling on LISA.
Siecntometrics, 112(12). DOI:
10.1007/s11192-017-2432-9
Furner, J. (2015). Information science is neither. Library Trends, 63(3), 362–377.
Ghanadinejad, F., Heidari, G., & Chin Pardaz, R. (2018). Content analysis of texts related to research priorities in information science.
Journal of Library and Information Science, 8 (1), 55-74.
https://doi.org/10.22067/riis.v0i. (In Persian)
Gru, B., & Hornik, K. (2011). Topicsmodels: An R package for fitting topic models. Journal of Statistical Software, 40(13), 1–30.
Gurcan , F., Cagiltay , N. E., & Cagi, K. (2020). Mapping Human–Computer Interaction Research Themes and Trends from Its Existence to Today: A Topic Modeling-Based Review of past 60 Years. International Journal of Human–Computer Interaction, 2-15.
Hall, D. L., Jurafsky, D., & Manning, C. D. (2008).
Studying the history of ideas using topic models. EMNLP '08: Proceedings of the Conference on Empirical Methods in Natural Language Processing, 363–371. DOI:
10.3115/1613715.1613763
Jalali Manesh, A. (2020). Design and compilation of research charter, research institutes, and research groups of Iran Institute of Information Science and Technology [In Persian]. Tehran: Irandoc.
Jeyaraj, A., & Hassan Zadeh, A. (2019). Evolution of Information Systems Research: Insights from Topic Modeling.
Information & Management,
57(4), 103207. DOI:
10.1016/j.im.2019.103207
John, W, M., & Petko, B. (2013). Introduction-Topic models: What they are and why they matter .
Poetics 41(6), 545-569. DOI:
10.1016/j.poetic.2013.10.001
Kherwa, P., & Bansal, P. (2018). Topic Modeling: A Comprehensive Review.
EAI Endorsed Transactions on Scalable Information Systems, 7(24), 159623. DOI:
10.4108/eai.13-7-2018.159623
Lee, J., Wood, J., & Kim, J. (2021). Tracing the Trends in Sustainability and Social Media Research Using Topic Modeling. Sustainability 13, 1-19.
Rabiei, M., Hosseini-Motlagh, S., & Haeri, A. (2017). Using text mining techniques for identifying research gaps and priorities: A case study of the environmental science in Iran. Scientometrics, 110(2), 815-842. (In Persian)
Rabiei, M., Hosseini-Motlagh, S., & Haeri, A. (2021). Evolution of IT, Management and Industrial Engineering research: A topic model approach. Scientia Iranica, 28(3), 1830-1852. (In Persian)
Razeqi, N., & Aghajani, H. (2020). Future research of Iranian scientific products until 2030 using ARIMA model. Library and Information Science Studies, 12(1), 13-34. (In Persian)
Robinson, K. A., Saldanha, I. J., & Mckoy, N. A. (2011). Development of a framework to identify research gaps from systematic reviews.
Journal of clinical epidemiology, 64(12), 1325-1330. DOI:
10.1016/j.jclinepi.2011.06.009
Sajedinejad, A. (2019). Comparison of research trends in the field of information technology in theses and dissertations of the country and its global trend using the method of text analysis. Tehran: Irandoc.
Seddiqqi, M., & Jalalimnesh, A. (2013). Study of Research Trend in Knowledge Management Field (2001-2010) and Mapping its Structure. Journal of Information Processing and Management, 28(2), 363-392. https://jipm.irandoc.ac.ir/article_699198.html. (In Persian)
Sharma, A., Rana, N. P., & Nunkoo, R. (2021). Fifty years of information management research: A conceptual structure analysis using structural topic modeling.
International Journal of Information Management 58(5), 102316. DOI:
10.1016/j.ijinfomgt.2021.102316
Steyvers, M., Smyth, P., Rosen-Zvi, M., & Griffiths, T. (2004).
Probabilistic author-topic models for information discovery. International conference on Knowledge discovery and data mining, Seattle, WA, USA. 306–315. Proceedings of the tenth ACM SIGKDD.
https://doi.org/10.1145/1014052.101408
Wallach, H. (2006). Topic modeling: Beyond bag-of-words. the 23rd International Conference on Machine Learning, 977-984. Pittsburgh, Pennsylvania, U.S.
Web of Science. (2020). Keywords Plus® (Web of Science Core Collection and Current Contents Connect only). Retrieved 01 29, 2020, from http://images.webofknowledge.com/WOKRS534DR1/help/WOS/
hp_advanced_search.html
Yau, C., Porter, A., Newman, N., & Suominen, A. (2014). Clustering scientific documents with topic modeling. Scientometrics, GTM special issue, 100(3), 767-786.
Zare-Farashbandi, F., Koohkan, E., Rajabi, G., & Yousofian, S. (2020). Identify and prioritize the information needs of families of children with cancer.
Library and Information Science Studies, 12(1), 208-226. https://doi.org/10.22055/slis.2019.29524.1603. (In Persian)